Effective face landmark localization via single deep network

نویسندگان

  • Zongping Deng
  • Ke Li
  • Qijun Zhao
  • Yi Zhang
  • Hu Chen
چکیده

In this paper, we propose a novel face alignment method using single deep network (SDN) on existing limited training data. Rather than using a max-pooling layer followed one convolutional layer in typical convolutional neural networks (CNN), SDN adopts a stack of 3 layer groups instead. Each group layer contains two convolutional layers and a maxpooling layer, which can extract the features hierarchically. Moreover, an effective data augmentation strategy and corresponding training skills are also proposed to overcome the lack of training images on COFW and 300-W datasets. The experiment results show that our method outperforms stateof-the-art methods in both detection accuracy and speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment

Heatmap regression has been used for landmark localization for quite a while now. Most of the methods use a very deep stack of bottleneck modules for heatmap classification stage, followed by heatmap regression to extract the keypoints. In this paper, we present a single dendritic CNN, termed as Pose Conditioned Dendritic Convolution Neural Network (PCD-CNN), where a classification network is f...

متن کامل

How far are we from solving the 2D&3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)

This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a ver...

متن کامل

Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, a...

متن کامل

GoDP: Globally Optimized Dual Pathway deep network architecture for facial landmark localization in-the-wild

Facial landmark localization is a fundamental module for pose-invariant face recognition. The most common approach for facial landmark detection is cascaded regression, which is composed of two steps: feature extraction and facial shape regression. Recent methods employ deep convolutional networks to extract robust features for each step, while the whole system could be regarded as a deep casca...

متن کامل

HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition

We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNN). The proposed method called, Hyperface, fuses the intermediate layers of a deep CNN using a separate CNN and trains multi-task loss on the fused features. It exploits the synergy among the tasks which boosts up their individual pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.02719  شماره 

صفحات  -

تاریخ انتشار 2017